Swagger UI

Qdrant API
 master 
OAS3

https://raw.githubusercontent.com/qdrant/qdrant/master/docs/redoc/master/openapi.json
Quick Start Examples

API description for Qdrant vector search engine.

This document describes CRUD and search operations on collections of points (vectors with payload).

Qdrant supports any combinations of should, min_should, must and must_not conditions, which makes it possible to use in applications when object could not be described solely by vector. It could be location features, availability flags, and other custom properties businesses should take into account.

Examples

This examples cover the most basic use-cases - collection creation and basic vector search.

Create collection

First - let's create a collection with dot-production metric.

curl -X PUT 'http://localhost:6333/collections/test_collection' \
  -H 'Content-Type: application/json' \
  --data-raw '{
    "vectors": {
      "size": 4,
      "distance": "Dot"
    }
  }'

Expected response:

{
    "result": true,
    "status": "ok",
    "time": 0.031095451
}

We can ensure that collection was created:

curl 'http://localhost:6333/collections/test_collection'

Expected response:

{
  "result": {
    "status": "green",
    "vectors_count": 0,
    "segments_count": 5,
    "disk_data_size": 0,
    "ram_data_size": 0,
    "config": {
      "params": {
        "vectors": {
          "size": 4,
          "distance": "Dot"
        }
      },
      "hnsw_config": {
        "m": 16,
        "ef_construct": 100,
        "full_scan_threshold": 10000
      },
      "optimizer_config": {
        "deleted_threshold": 0.2,
        "vacuum_min_vector_number": 1000,
        "default_segment_number": 2,
        "max_segment_size": null,
        "memmap_threshold": null,
        "indexing_threshold": 20000,
        "flush_interval_sec": 5,
        "max_optimization_threads": null
      },
      "wal_config": {
        "wal_capacity_mb": 32,
        "wal_segments_ahead": 0
      }
    }
  },
  "status": "ok",
  "time": 2.1199e-05
}

Add points

Let's now add vectors with some payload:

curl -L -X PUT 'http://localhost:6333/collections/test_collection/points?wait=true' \ -H 'Content-Type: application/json' \ --data-raw '{
  "points": [
    {"id": 1, "vector": [0.05, 0.61, 0.76, 0.74], "payload": {"city": "Berlin"}},
    {"id": 2, "vector": [0.19, 0.81, 0.75, 0.11], "payload": {"city": ["Berlin", "London"] }},
    {"id": 3, "vector": [0.36, 0.55, 0.47, 0.94], "payload": {"city": ["Berlin", "Moscow"] }},
    {"id": 4, "vector": [0.18, 0.01, 0.85, 0.80], "payload": {"city": ["London", "Moscow"] }},
    {"id": 5, "vector": [0.24, 0.18, 0.22, 0.44], "payload": {"count": [0]}},
    {"id": 6, "vector": [0.35, 0.08, 0.11, 0.44]}
  ]
}'

Expected response:

{
    "result": {
        "operation_id": 0,
        "status": "completed"
    },
    "status": "ok",
    "time": 0.000206061
}

Search with filtering

Let's start with a basic request:

curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \ -H 'Content-Type: application/json' \ --data-raw '{
    "vector": [0.2,0.1,0.9,0.7],
    "top": 3
}'

Expected response:

{
    "result": [
        { "id": 4, "score": 1.362, "payload": null, "version": 0 },
        { "id": 1, "score": 1.273, "payload": null, "version": 0 },
        { "id": 3, "score": 1.208, "payload": null, "version": 0 }
    ],
    "status": "ok",
    "time": 0.000055785
}

But result is different if we add a filter:

curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \ -H 'Content-Type: application/json' \ --data-raw '{
    "filter": {
        "should": [
            {
                "key": "city",
                "match": {
                    "value": "London"
                }
            }
        ]
    },
    "vector": [0.2, 0.1, 0.9, 0.7],
    "top": 3
}'

Expected response:

{
    "result": [
        { "id": 4, "score": 1.362, "payload": null, "version": 0 },
        { "id": 2, "score": 0.871, "payload": null, "version": 0 }
    ],
    "status": "ok",
    "time": 0.000093972
}
Find out more about Qdrant applications and demo
Servers
Computed URL:http://localhost:6333

Server variables

protocol
hostname
port

Collections

Searchable collections of points.

Aliases

Additional names for existing collections.

Indexes

Indexes for payloads associated with points.

Distributed

Service distributed setup.

Snapshots

Storage and collections snapshots.

Service

Qdrant service utilities.

Beta

Beta features, do not depend on these yet.